Question

The point(s) on the curve $${y^3} + 3{x^2} = 12y$$    where the tangent is vertical, is (are)

A. $$\left( { \pm \frac{4}{{\sqrt 3 }}, - 2} \right)$$
B. $$\left( { \pm \sqrt {\frac{{11}}{3}} ,1} \right)$$
C. $$\left( {0,0} \right)$$
D. $$\left( { \pm \frac{4}{{\sqrt 3 }},2} \right)$$  
Answer :   $$\left( { \pm \frac{4}{{\sqrt 3 }},2} \right)$$
Solution :
$$\eqalign{ & {\text{The}}\,{\text{given}}\,{\text{curve}}\,{\text{is}}\,{y^3} + 3{x^2} = 12y \cr & \Rightarrow 3{y^2}\frac{{dy}}{{dx}} + 6x = 12\frac{{dy}}{{dx}} \Rightarrow \quad \frac{{dy}}{{dx}} = \frac{{2x}}{{4 - {y^2}}} \cr & {\text{For}}\,{\text{vertical}}\,{\text{tangents}}\,\frac{{dy}}{{dx}} = \frac{1}{0} \Rightarrow 4 - {y^2} = 0 \Rightarrow y = \pm 2 \cr & {\text{For}}\,y = 2,{x^2} = \frac{{24 - 8}}{3} = \frac{{16}}{3} \Rightarrow x = \pm \frac{4}{{\sqrt 3 }} \cr & {\text{For}}\,y = - 2,{x^2} = \frac{{ - 24 + 8}}{3} = - ve\,\left( {{\text{not}}\,{\text{possible}}} \right) \cr & \therefore {\text{Req}}{\text{.}}\,{\text{points}}\,{\text{are}}\,\left( { \pm \frac{4}{{\sqrt 3 }},2} \right) \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section