Question

The points $$\left( {4,\,7,\,8} \right),\,\left( {2,\,3,\,4} \right),\,\left( { - 1,\, - 2,\,1} \right)$$       and $$\left( {1,\,2,\,5} \right)$$   are the vertices of a :

A. parallelogram  
B. rhombus
C. rectangle
D. square
Answer :   parallelogram
Solution :
Let the points are $$A,\,B,\,C$$   and $$D$$ respectively.
Mid point of $$AC$$  is
$$\left( {\frac{{4 - 1}}{2},\,\frac{{7 - 2}}{2},\,\frac{{8 + 1}}{2}} \right){\text{ or }}\left( {\frac{3}{2},\,\frac{5}{2},\,\frac{9}{2}} \right)$$
Mid point of $$BD$$  is
$$\left( {\frac{{2 + 1}}{2},\,\frac{{3 + 2}}{2},\,\frac{{4 + 5}}{2}} \right){\text{ or }}\left( {\frac{3}{2},\,\frac{5}{2},\,\frac{9}{2}} \right)$$
Thus $$AC$$  and $$BD$$  bisect each other. Further,
$$\eqalign{ & AC = \sqrt {{{\left( {4 + 1} \right)}^2} + {{\left( {7 + 2} \right)}^2} + {{\left( {8 - 1} \right)}^2}} \cr & AC = \sqrt {25 + 81 + 49} \cr & AC = \sqrt {155} \cr & BD = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {3 - 2} \right)}^2} + {{\left( {4 - 5} \right)}^2}} \cr & BD = \sqrt {1 + 1 + 1} \cr & BD = \sqrt 3 \cr & \therefore \,AC \ne BD \cr} $$
Hence, $$ABCD$$   represents a parallelogram.

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section