Question
      
        The point diametrically opposite to the point $$P\left( {1,\,0} \right)$$  on the circle $${x^2} + {y^2} + 2x + 4y - 3 = 0$$      is-                                 
       A.
        $$\left( {3,\, - 4} \right)$$              
       B.
        $$\left( { - 3,\,4} \right)$$              
       C.
        $$\left( { - 3,\, - 4} \right)$$                 
              
       D.
        $$\left( {3,\,4} \right)$$              
            
                Answer :  
        $$\left( { - 3,\, - 4} \right)$$      
             Solution :
        The given circle is $${x^2} + {y^2} + 2x + 4y - 3 = 0$$

Centre $$\left( { - 1,\, - 2} \right)$$
Let $$Q\left( {\alpha ,\,\beta } \right)$$  be the point diametrically opposite to the point $$P\left( {1,\,0} \right),$$
then $$\frac{{1 + \alpha }}{2} =  - 1{\text{  and  }}\frac{{0 + \beta }}{2} =  - 2$$
$$ \Rightarrow \alpha  =  - 3,\,\,\beta  =  - 4,\,\,\,{\text{So }}Q\,\,{\text{is}}\left( { - 3,\, - 4} \right)$$