Question

The plane through the intersection of the planes $$x+y+z=1$$   and $$2x+3y-z+4=0$$     and parallel to $$y$$-axis also passes through the point :

A. $$\left( { - 3,\,0,\, - 1} \right)$$
B. $$\left( { - 3,\,1,\,1} \right)$$
C. $$\left( {3,\,3,\, - 1} \right)$$
D. $$\left( {3,\,2,\,1} \right)$$  
Answer :   $$\left( {3,\,2,\,1} \right)$$
Solution :
Since, equation of plane through intersection of planes
$$x+y+z=1$$   and $$2x+3y-z+4=0$$     is
$$\eqalign{ & \left( {2x + 3y - z + 4} \right) + \lambda \left( {x + y + z - 1} \right) = 0 \cr & \left( {2 + \lambda } \right)x + \left( {3 + \lambda } \right)y + \left( { - 1 + \lambda } \right)z + \left( {4 - \lambda } \right) = 0.....(1) \cr} $$
But, the above plane is parallel to y-axis then
$$\eqalign{ & \left( {2 + \lambda } \right) \times 0 + \left( {3 + \lambda } \right) \times 1 + \left( { - 1 + \lambda } \right) \times 0 = 0 \cr & \Rightarrow \lambda = - 3 \cr} $$
Hence, the equation of required plane is
$$\eqalign{ & - x - 4z + 7 = 0 \cr & \Rightarrow x + 4z - 7 = 0 \cr} $$
Therefore, (3, 2, 1) the passes through the point.

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section