Question

The perpendicular distance of $$P\left( {1,\,2,\,3} \right)$$   from the line $$\frac{{x - 6}}{3} = \frac{{y - 7}}{2} = \frac{{z - 7}}{{ - 2}}$$     is :

A. $$7$$  
B. $$5$$
C. $$0$$
D. $$6$$
Answer :   $$7$$
Solution :
The point $$A\left( {6,\,7,\,7} \right)$$   is on the line . Let the perpendicular from $$P$$ meet the line in $$L$$. Then
$$A{P^2} = {\left( {6 - 1} \right)^2} + {\left( {7 - 2} \right)^2} + {\left( {7 - 3} \right)^2} = 66$$
Three Dimensional Geometry mcq solution image
$$\eqalign{ & {\text{Also }}AL = {\text{ projection of }}AP\,{\text{on line}} \cr & \left( {{\text{actual d}}{\text{.c}}{\text{.'s }}\frac{3}{{\sqrt {17} }},\,\frac{2}{{\sqrt {17} }},\,\frac{{ - 2}}{{\sqrt {17} }}} \right) \cr & \Rightarrow \left( {6 - 1} \right).\frac{3}{{\sqrt {17} }} + \left( {7 - 2} \right).\frac{2}{{\sqrt {17} }} + \left( {7 - 3} \right).\frac{{ - 2}}{{\sqrt {17} }} = \sqrt {17} \cr & \therefore \, \bot \,{\text{distance }}d{\text{ of }}P{\text{ from the line is given by}} \cr & {d^2} = A{P^2} - A{L^2} \cr & \Rightarrow {d^2} = 66 - 17 \cr & \Rightarrow {d^2} = 49 \cr & {\text{So, that }}d = 7 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section