Solution :
The point $$A\left( {6,\,7,\,7} \right)$$ is on the line . Let the perpendicular from $$P$$ meet the line in $$L$$. Then
$$A{P^2} = {\left( {6 - 1} \right)^2} + {\left( {7 - 2} \right)^2} + {\left( {7 - 3} \right)^2} = 66$$

$$\eqalign{
& {\text{Also }}AL = {\text{ projection of }}AP\,{\text{on line}} \cr
& \left( {{\text{actual d}}{\text{.c}}{\text{.'s }}\frac{3}{{\sqrt {17} }},\,\frac{2}{{\sqrt {17} }},\,\frac{{ - 2}}{{\sqrt {17} }}} \right) \cr
& \Rightarrow \left( {6 - 1} \right).\frac{3}{{\sqrt {17} }} + \left( {7 - 2} \right).\frac{2}{{\sqrt {17} }} + \left( {7 - 3} \right).\frac{{ - 2}}{{\sqrt {17} }} = \sqrt {17} \cr
& \therefore \, \bot \,{\text{distance }}d{\text{ of }}P{\text{ from the line is given by}} \cr
& {d^2} = A{P^2} - A{L^2} \cr
& \Rightarrow {d^2} = 66 - 17 \cr
& \Rightarrow {d^2} = 49 \cr
& {\text{So, that }}d = 7 \cr} $$