Question

The parabolas $${y^2} = 4x$$   and $${x^2} = 4y$$   divide the square region bounded by the lines $$x = 4,\,y = 4$$    and the coordinate axes. If $${S_1},\,{S_2},\,{S_3}$$   are respectively the areas of these parts numbered from top to bottom; then $${S_1}:{S_2}:{S_3}$$    is-

A. $$1 : 2 : 1$$
B. $$1 : 2 : 3$$
C. $$2 : 1 : 2$$
D. $$1 : 1 : 1$$  
Answer :   $$1 : 1 : 1$$
Solution :
Intersection points of $${x^2} = 4y$$   and $${y^2} = 4x$$   are $$\left( {0,\,0} \right)$$  and $$\left( {4,\,4} \right).$$  The graph is as shown in the figure.
Application of Integration mcq solution image
By symmetry, we observe
$$\eqalign{ & {S_1} = {S_3} = \int\limits_0^4 {y\,dx} = \int\limits_0^4 {\frac{{{x^2}}}{4}dx} = \left[ {\frac{{{x^3}}}{{12}}} \right]_0^4 = \frac{{16}}{3}\,\,{\text{sq}}{\text{.}}\,{\text{units}} \cr & {\text{Also }}{S_2} = \int\limits_0^4 {\left( {2\sqrt x - \frac{{{x^2}}}{4}} \right)dx} = \left[ {\frac{{2{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} - \frac{{{x^3}}}{{12}}} \right]_0^4 \cr & = \frac{4}{3} \times 8 - \frac{{16}}{3} = \frac{{16}}{3}\,\,{\text{sq}}{\text{.}}\,{\text{units}} \cr & \therefore {S_1}:{S_2}:{S_3} = 1:1:1 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section