Question

The number of values of $$x$$ in $$\left[ {0,5\pi } \right]$$  satisfying the equation $$3\cos 2x - 10\cos x + 7 = 0$$      is

A. 5
B. 6
C. 8  
D. 10
Answer :   8
Solution :
Here, $$6{\cos ^2}x - 10\cos x + 4 = 0\,\,\,\,{\text{or, }}\left( {3\cos x - 2} \right)\left( {\cos x - 1} \right) = 0$$
$$\eqalign{ & \therefore \,\,\cos x = \frac{2}{3},1 \cr & \Rightarrow \,\,x = 2n\pi \pm {\cos ^{ - 1}}\frac{2}{3},2n\pi . \cr} $$
From $$x = 2n\pi $$   we get one solution each for $$n = 0,1,2.$$
From $$x = 2n\pi \pm {\cos ^{ - 1}}\frac{2}{3}$$    we get the following solutions:
when $$n = 0,$$  one solution; when $$n = 1,$$  two solutions; when $$n = 2,$$  two solutions.

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section