Question

The number of terms in the expansion of $${\left( {{x^2} + 1 + \frac{1}{{{x^2}}}} \right)^n},n \in N,$$     is

A. $$2n$$
B. $$3n$$
C. $$2n + 1$$  
D. $$3n + 1$$
Answer :   $$2n + 1$$
Solution :
$${\left\{ {1 + \left( {{x^2} + \frac{1}{{{x^2}}}} \right)} \right\}^n} = {\,^n}{C_0} + {\,^n}{C_1}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) + {\,^n}{C_2}{\left( {{x^2} + \frac{1}{{{x^2}}}} \right)^2} + ..... + {\,^n}{C_n}{\left( {{x^2} + \frac{1}{{{x^2}}}} \right)^n}$$
Here, all the terms are positive and will contain powers
$${\left( {{x^2}} \right)^0},{\left( {{x^2}} \right)^1},{\left( {{x^2}} \right)^2},.....,{\left( {{x^2}} \right)^n},{\left( {{x^2}} \right)^{ - n}},{\left( {{x^2}} \right)^{ - \left( {n - 1} \right)}},.....,{\left( {{x^2}} \right)^{ - 1}}\,{\text{only}}{\text{.}}$$
∴ the number of terms will be $$2n + 1.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section