Question

The number of surjection from $$A = \left\{ {1,\,2,\,.....,\,n} \right\},\,n \geqslant 2{\text{ onto }}B = \left\{ {a,\,b} \right\}$$         is :

A. $${}^n{P_2}$$
B. $${2^n} - 2$$  
C. $${2^n} - 1$$
D. none of these
Answer :   $${2^n} - 2$$
Solution :
We know that, if $$X$$ and $$Y$$ are any two finite sets having $$m$$ and $$n$$ elements respectively, where $$1 \leqslant n \leqslant m,$$   then the number of onto functions from $$X$$ to $$Y$$ is given by $$\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^{n - r}}\,{}^n{C_r}{r^m}.r = 1} $$
Thus, the number of surjective mapping is $$\sum\limits_{r = 1}^2 {{{\left( { - 1} \right)}^{2 - r}}\,{C_r}{r^n} = \left( {{2^n} - 2} \right)} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section