Question

The number of real values of $$k$$ for which the lines $$\frac{{x - k}}{4} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}$$     and $$\frac{{x - \left( {k + 1} \right)}}{1} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2}$$      are intersecting, is :

A. 0
B. 2
C. 1
D. infinite  
Answer :   infinite
Solution :
Any point on the first line is $$\left( {4r + k,\,2r + 1,\,r - 1} \right),$$     and any point on the second line is $$\left( {r' + k + 1,\, - r',\,2r' + 1} \right).$$      The lines are intersecting if $$4r + k = r' + k + 1,\,2r + 1 = - r',\,r - 1 = 2r' + 1$$          for some $$r$$ and $$r' \Rightarrow 4r - r' = 1,\,2r + r' = - 1,\,r - 2r' = 2.$$
Now, $$4r - r' = 1,\,2r + r' = - 1\,\, \Rightarrow r = 0,\,r' = - 1$$         which satisfy $$r - 2r' = 2.$$
This is true for all $$k.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section