Question
The number of points $$\left( {a,\,b} \right),$$ where $$a$$ and $$b$$ are positive integers lying on the hyperbola $${x^2} - {y^2} = 512$$ is :
A.
$$3$$
B.
$$4$$
C.
$$5$$
D.
$$6$$
Answer :
$$4$$
Solution :
$$\eqalign{
& {a^2} - {b^2} = 512 \cr
& \Rightarrow \left( {a + b} \right)\left( {a - b} \right) = {2^9} \cr
& \Rightarrow \left( {a + b,\,a - b} \right) = \left( {{2^8},\,2} \right),\,\left( {{2^7},\,{2^2}} \right),\,\left( {{2^6},\,{2^3}} \right),\,\left( {{2^5},\,{2^4}} \right) \cr} $$
Since, $$a > b,\,a + b > a - b$$ therefore the other combinations like $$\left( {{2^4},\,{2^5}} \right)$$ etc cannot be accepted. $$\left( {{2^9},\,1} \right)$$ also cannot be accepted since $$a$$ and $$b$$ are positive integers.