Question

The number of linear function $$f$$ satisfying $$f\left( {x + f\left( x \right)} \right) = x + f\left( x \right)\,\forall \,x\, \in \,R$$       is :

A. 0
B. 1
C. 2  
D. 3
Answer :   2
Solution :
$$\eqalign{ & {\text{Let }}f\left( x \right) = ax + b.....(1) \cr & \Rightarrow f\left( {ax + b + x} \right) = x + ax + b \cr & \Rightarrow f\left( {\left( {a + 1} \right)x + b} \right) = \left( {a + 1} \right)x + b \cr & {\text{Replace }}\left( {a + 1} \right)x + b\,{\text{by }}y{\text{, we have}} \cr & \Rightarrow f\left( y \right) = \left( {a + 1} \right)\left( {\frac{{y - b}}{{a + 1}}} \right) + b \cr & {\text{or }}f\left( x \right) = \left( {a + 1} \right)\left( {\frac{{x - b}}{{a + 1}}} \right) + b \cr} $$
$$\therefore $$  required number of linear functions is 2.

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section