Question

The number of elements in the set $$\left\{ {\left( {a,\,b} \right):2{a^2} + 3{b^2} = 35,\,a,\,b\, \in \,Z} \right\},$$        where $$Z$$ is the set of all integers, is :

A. $$2$$
B. $$4$$
C. $$8$$  
D. $$12$$
Answer :   $$8$$
Solution :
$$\eqalign{ & {\text{Given set is}} \cr & \left\{ {\left( {a,\,b} \right):2{a^2} + 3{b^2} = 35,\,a,\,b\, \in \,Z} \right\}, \cr & {\text{We can see that,}} \cr & 2{\left( { \pm 2} \right)^2} + 3{\left( { \pm 3} \right)^2} = 35{\text{ and }}2{\left( { \pm 4} \right)^2} + 3{\left( { \pm 1} \right)^2} = 35 \cr & \therefore \,\left( {2,\,3} \right),\,\left( {2,\, - 3} \right),\,\left( { - 2,\, - 3} \right),\,\left( { - 2,\,3} \right),\,\left( {4,\,1} \right),\,\left( {4,\, - 1} \right),\,\left( { - 4,\, - 1} \right),\,\left( { - 4,\,1} \right) \cr & {\text{are 8 elements of the set}}{\text{.}} \cr & \therefore \,\,n = 8 \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section