Question

The number of distinct real values of $$\lambda ,$$  for which the vectors $$ - {\lambda ^2}\hat i + \hat j + \hat k,\,\hat i - {\lambda ^2}\hat j + \hat k$$      and $$\hat i + \hat j - {\lambda ^2}\hat k$$   are coplanar, is :

A. zero
B. one
C. two  
D. three
Answer :   two
Solution :
We know that three vector are coplanar if their scalar triple product is zero.
\[\begin{array}{l} \Rightarrow \left| \begin{array}{l} - {\lambda ^2}\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\, - {\lambda ^2}\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,\,\,\,\,1\,\,\, - {\lambda ^2} \end{array} \right| = 0\\ {R_1} \to {R_1} + {R_2} + {R_3}\\ \Rightarrow \left| \begin{array}{l} 2 - {\lambda ^2}\,\,\,\,\,2 - {\lambda ^2}\,\,\,\,\,2 - {\lambda ^2}\\ \,\,\,\,\,1\,\,\,\,\,\,\,\,\,\, - {\lambda ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ \,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - {\lambda ^2} \end{array} \right| = 0\\ \Rightarrow \left( {2 - {\lambda ^2}} \right)\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\, - {\lambda ^2}\,\,\,\,1\\ 1\,\,\,\,\,\,\,\,\,1\,\,\, - {\lambda ^2} \end{array} \right| = 0\\ \Rightarrow \left( {2 - {\lambda ^2}} \right)\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 0\,\,\,\, - \left( {1 + {\lambda ^2}} \right)\,\,\,\,\,0\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\, - \left( {1 + {\lambda ^2}} \right) \end{array} \right| = 0\\ \left( {{R_2} - {R_1},\,\,{R_3} - {R_1}} \right)\\ \Rightarrow \left( {2 - {\lambda ^2}} \right){\left( {1 + {\lambda ^2}} \right)^2} = 0\\ \Rightarrow \lambda = \pm \sqrt 2 \end{array}\]
$$\therefore $$ Two real solutions.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section