Question
      
        The number of complex numbers $$z$$ such that $$\left| {z - 1} \right| = \left| {z + 1} \right| = \left| {z - i} \right|$$     equals                                                          
       A.
        $$1$$                 
              
       B.
        $$2$$              
       C.
        $$\infty $$              
       D.
        $$0$$              
            
                Answer :  
        $$1$$      
             Solution :
        $$\eqalign{
  & {\text{Let }}z = x + iy  \cr 
  & \left| {z - 1} \right| = \left| {z + 1} \right|{\left( {x - 1} \right)^2} + {y^2} = {\left( {x + 1} \right)^2} + {y^2}  \cr 
  &  \Rightarrow \,\,{\text{Re}}\,z = 0\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,x = 0  \cr 
  & \left| {z - 1} \right| = \left| {z - i} \right|{\left( {x - 1} \right)^2} + {y^2} = {x^2} + {\left( {y - 1} \right)^2}  \cr 
  &  \Rightarrow \,\,x = y  \cr 
  & \left| {z + 1} \right| = \left| {z - i} \right|{\left( {x + 1} \right)^2} + {y^2} = {x^2} + {\left( {y - 1} \right)^2} \cr} $$
Only $$(0, 0)$$  will satisfy all conditions.
⇒  Number of complex number $$z = 1$$