Question

The maximum volume (in $$cu.m$$  ) of the right circular cone having slant height $$3\,m$$  is:

A. $$6\pi $$
B. $$3\sqrt 3 \pi $$
C. $$\frac{4}{3}\pi $$
D. $$2\sqrt 3 \pi $$  
Answer :   $$2\sqrt 3 \pi $$
Solution :
Application of Derivatives mcq solution image

$$\eqalign{ & {h^2} + {r^2} = { \approx ^2} = 9\,......\left( 1 \right) \cr & {\text{Volume}}\,{\text{of}}\,{\text{cone}} \cr & V = \frac{1}{3}\pi {r^2}h\,......\left( 2 \right) \cr & {\text{From }}\left( {\text{1}} \right){\text{ and }}\left( {\text{2}} \right){\text{,}} \cr & \Rightarrow V = \frac{1}{3}\pi \left( {9 - {h^2}} \right)h \Rightarrow V = \frac{1}{3}\pi \left( {9h - {h^3}} \right) \cr & \Rightarrow \frac{{dv}}{{dh}} = \frac{1}{3}\pi \left( {9 - 3{h^2}} \right) \cr & {\text{For}}\,{\text{maxima/minima,}} \cr & \frac{{dV}}{{dh}} = 0 \Rightarrow \frac{1}{3}\pi \left( {9 - 3{h^2}} \right) = 0 \cr & \Rightarrow h = \pm \sqrt 3 \Rightarrow h = \sqrt 3 \cr & {\text{Now}}\,;\frac{{{d^2}V}}{{d{h^2}}} = \frac{1}{3}\pi \left( { - 6h} \right) \cr & {\text{Here}},\,{\left( {\frac{{{d^2}V}}{{d{h^2}}}} \right)_{{\text{at}}\,h = \sqrt 3 }} < 0 \cr & {\text{Then,}}\,h = \sqrt 3 \,{\text{is point of maxima}} \cr & {\text{Hence, the required maximum volume is,}} \cr & V = \frac{1}{3}\pi \left( {9 - 3} \right)\sqrt 3 = 2\sqrt 3 \pi \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section