Question

The maximum area of a right angled triangle with hypotenuse $$h$$ is :

A. $$\frac{{{h^2}}}{{2\sqrt 2 }}$$
B. $$\frac{{{h^2}}}{2}$$
C. $$\frac{{{h^2}}}{{\sqrt 2 }}$$
D. $$\frac{{{h^2}}}{4}$$  
Answer :   $$\frac{{{h^2}}}{4}$$
Solution :
$$\eqalign{ & {\text{Let base }} = b \cr & {\text{Altitude }}\left( {{\text{or perpendicular}}} \right) = \sqrt {{h^2} - {b^2}} \cr} $$
Application of Derivatives mcq solution image
$$\eqalign{ & {\text{Area, }}A = \frac{1}{2} \times {\text{base}} \times {\text{altitude}} \cr & {\text{ = }}\frac{1}{2} \times b \times \sqrt {{h^2} - {b^2}} \cr & \Rightarrow \frac{{dA}}{{db}}{\text{ = }}\frac{1}{2}\left[ {\sqrt {{h^2} - {b^2}} + b.\frac{{ - 2b}}{{2\sqrt {{h^2} - {b^2}} }}} \right] \cr & \Rightarrow \frac{{dA}}{{db}} = \frac{1}{2}\left[ {\frac{{{h^2} - 2{b^2}}}{{\sqrt {{h^2} - {b^2}} }}} \right] \cr & {\text{Put }}\frac{{dA}}{{db}} = 0,b = \frac{h}{{\sqrt 2 }} \cr & {\text{Maximum area}} = \frac{1}{2} \times \frac{h}{{\sqrt 2 }} \times \sqrt {{h^2} - \frac{{{h^2}}}{2}} = \frac{{{h^2}}}{4} \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section