Question

The locus of the orthocenter of the triangle formed by the lines
$$\eqalign{ & \left( {1 + p} \right)x - py + p\left( {1 + p} \right) = 0, \cr & \left( {1 + q} \right)x - qy + q\left( {1 + q} \right) = 0, \cr} $$
and $$y=0,$$  where $$p \ne q,$$  is :

A. a hyperbola
B. a parabola
C. an ellipse
D. a straight line  
Answer :   a straight line
Solution :
The triangle is formed by the lines
Locus mcq solution image
$$\eqalign{ & AB:\left( {1 + p} \right)x - py + p\left( {1 + p} \right) = 0 \cr & AC:\left( {1 + q} \right)x - qy + q\left( {1 + q} \right) = 0 \cr & BC:y = 0 \cr} $$
So that the vertices are
$$A\left( {pq,\left( {p + 1} \right)\left( {q + 1} \right)} \right),\,\,B\left( { - p,\,0} \right),\,\,C\left( { - q,\,0} \right)$$
Let $$H\left( {h,\,k} \right)$$  be the orthocenter of $$\Delta ABC.$$   Then as $$AH \bot BC$$   and passes through $$A\left( {pq,\left( {p + 1} \right)\left( {q + 1} \right)\,} \right)$$
The equation of $$AH$$  is $$x=pq$$
$$\therefore h = pq.....(1)$$
Also $$BH$$  is perpendicular to $$AC$$
$$\eqalign{ & \therefore {m_1}{m_2} = - 1 \Rightarrow \frac{{k - 0}}{{h + p}} \times \frac{{1 + q}}{q} = - 1 \cr & \Rightarrow \frac{k}{{pq + p}} \times \frac{{1 + q}}{q} = - 1\,\,\,\,\,\,\left( {{\text{using equation (1)}}} \right) \cr & \Rightarrow k = - pq.....(2) \cr} $$
From (1) and (2) we observe $$h+k=0$$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$  is $$x+y=0$$  which is a straight line.

Releted MCQ Question on
Geometry >> Locus

Releted Question 1

The equation $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$       represents :

A. an ellipse
B. a hyperbola
C. a circle
D. none of these
Releted Question 2

The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$       represents :

A. no locus if $$k>0$$
B. an ellipse if $$k<0$$
C. a point if $$k=0$$
D. a hyperbola if $$k>0$$
Releted Question 3

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Releted Question 4

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$
D. $$x = \frac{a}{2}$$

Practice More Releted MCQ Question on
Locus


Practice More MCQ Question on Maths Section