Solution :
The triangle is formed by the lines

$$\eqalign{
& AB:\left( {1 + p} \right)x - py + p\left( {1 + p} \right) = 0 \cr
& AC:\left( {1 + q} \right)x - qy + q\left( {1 + q} \right) = 0 \cr
& BC:y = 0 \cr} $$
So that the vertices are
$$A\left( {pq,\left( {p + 1} \right)\left( {q + 1} \right)} \right),\,\,B\left( { - p,\,0} \right),\,\,C\left( { - q,\,0} \right)$$
Let $$H\left( {h,\,k} \right)$$ be the orthocenter of $$\Delta ABC.$$ Then as $$AH \bot BC$$ and passes through $$A\left( {pq,\left( {p + 1} \right)\left( {q + 1} \right)\,} \right)$$
The equation of $$AH$$ is $$x=pq$$
$$\therefore h = pq.....(1)$$
Also $$BH$$ is perpendicular to $$AC$$
$$\eqalign{
& \therefore {m_1}{m_2} = - 1 \Rightarrow \frac{{k - 0}}{{h + p}} \times \frac{{1 + q}}{q} = - 1 \cr
& \Rightarrow \frac{k}{{pq + p}} \times \frac{{1 + q}}{q} = - 1\,\,\,\,\,\,\left( {{\text{using equation (1)}}} \right) \cr
& \Rightarrow k = - pq.....(2) \cr} $$
From (1) and (2) we observe $$h+k=0$$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$ is $$x+y=0$$ which is a straight line.