Question
The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$ is another parabola with directrix :
A.
$$x = - a$$
B.
$$x = - \frac{a}{2}$$
C.
$$x = 0$$
D.
$$x = \frac{a}{2}$$
Answer :
$$x = 0$$
Solution :
If $$\left( {h,\,k} \right)$$ is the mid point of line joining focus $$\left( {a,\,0} \right)$$ and $$Q\left( {a{t^2},\,2at} \right)$$ on parabola then $$h = \frac{{a + a{t^2}}}{2},\,k = at$$
Eliminating $$t,$$ we get $$2h = a + a\left( {\frac{{{k^2}}}{{{a^2}}}} \right)$$
$$ \Rightarrow {k^2} = a\left( {2h - a} \right)\,\,\,\, \Rightarrow {k^2} = 2a\left( {h - \frac{a}{2}} \right)$$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$ is $${y^2} = 2a\left( {x - \frac{a}{2}} \right)$$
whose directrix is $$\left( {x - \frac{a}{2}} \right) = - \frac{a}{2}$$
$$ \Rightarrow x = 0$$