Question

The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line $$4x - 5y = 20$$   to the circle $${x^2} + {y^2} = 9$$   is-

A. $$20\left( {{x^2} + {y^2}} \right) - 36x + 45y = 0$$  
B. $$20\left( {{x^2} + {y^2}} \right) + 36x - 45y = 0$$
C. $$36\left( {{x^2} + {y^2}} \right) - 20x + 45y = 0$$
D. $$36\left( {{x^2} + {y^2}} \right) + 20x - 45y = 0$$
Answer :   $$20\left( {{x^2} + {y^2}} \right) - 36x + 45y = 0$$
Solution :
Any point $$P$$ on line $$4x-5y =20$$   is $$\left( {\alpha ,\,\frac{{4\alpha - 20}}{5}} \right).$$
Equation of chord of contact $$AB$$  to the circle $${x^2} + {y^2} = 9$$
Circle mcq solution image
drawn from point $$P\left( {\alpha ,\,\frac{{4\alpha - 20}}{5}} \right)$$    is
$$x.\alpha + y.\left( {\frac{{4\alpha - 20}}{5}} \right) = 9.....(1)$$
Also the equation of chord $$AB$$  whose mid point is $$\left( {h,\,k} \right)$$  is
$$hx + ky = {h^2} + {k^2}.....(2)$$
$$\because $$ Equations (1) and (2) represent the same line, therefore
$$\eqalign{ & \frac{h}{\alpha } = \frac{k}{{\frac{{4\alpha - 20}}{5}}} = \frac{{{h^2} + {k^2}}}{9} \cr & \Rightarrow 5k\alpha = 4h\alpha - 20h{\text{ and }}9h = \alpha \left( {{h^2} + {k^2}} \right) \cr & \Rightarrow \alpha = \frac{{20h}}{{4h - 5k}}{\text{ and }}\alpha = \frac{{9h}}{{{h^2} + {k^2}}} \cr & \Rightarrow \frac{{20h}}{{4h - 5k}} = \frac{{9h}}{{{h^2} + {k^2}}} \cr & \Rightarrow 20\left( {{h^2} + {k^2}} \right) = 9\left( {4h - 5k} \right) \cr} $$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$
$$20\left( {{x^2} + {y^2}} \right) - 36x + 45y = 0$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section