Question

The line passing through the points $$\left( {5,\,1,\,a} \right)$$  and $$\left( {3,\,b,\,1} \right)$$  crosses the $$yz$$ -plane at the point $$\left( {0,\,\frac{{17}}{2},\,\frac{{ - 13}}{2}} \right).$$    Then :

A. $$a = 2,\,b = 8$$
B. $$a = 4,\,b = 6$$
C. $$a = 6,\,b = 4$$  
D. $$a = 8,\,b = 2$$
Answer :   $$a = 6,\,b = 4$$
Solution :
Equation of line through $$\left( {5,\,1,\,a} \right)$$  and $$\left( {3,\,b,\,1} \right)$$  is $$\frac{{x - 5}}{{ - 2}} = \frac{{y - 1}}{{b - 1}} = \frac{{z - a}}{{1 - a}} = \lambda $$
$$\therefore $$  Any point on this line is a $$\left[ { - 2\lambda + 5,\,\left( {b - 1} \right)\lambda + 1,\,\left( {1 - a} \right)\lambda + a} \right]$$
It crosses $$yz$$  plane where $$ - 2\lambda + 5 = 0 \Rightarrow \lambda = \frac{5}{2}$$
$$\eqalign{ & \therefore \,\left( {0,\,\left( {b - 1} \right)\frac{5}{2} + 1,\,\left( {1 - a} \right)\frac{5}{2} + a} \right) = \left( {0,\,\frac{{17}}{2},\,\frac{{ - 13}}{2}} \right) \cr & \Rightarrow \left( {b - 1} \right)\frac{5}{2} + 1 = \frac{{17}}{2}{\text{ and }}\left( {1 - a} \right)\frac{5}{2} + a = - \frac{{13}}{2} \cr & \Rightarrow b = 4{\text{ and }}a = 6 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section