Question

The inverse of $$f\left( x \right) = \frac{2}{3}\frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}$$     is :

A. $$\frac{1}{3}\,{\log _{10}}\frac{{1 + x}}{{1 - x}}$$
B. $$\frac{1}{2}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}$$  
C. $$\frac{1}{3}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}$$
D. $$\frac{1}{6}\,{\log _{10}}\frac{{2 - 3x}}{{2 + 3x}}$$
Answer :   $$\frac{1}{2}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}$$
Solution :
$$\eqalign{ & {\text{If }}y = \frac{2}{3}\frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}},\,\,\,{10^{2x}} = \frac{{3y + 2}}{{2 - 3y}} \cr & {\text{or }}x = \frac{1}{2}\,{\log _{10}}\frac{{2 + 3y}}{{2 - 3y}} \cr & \therefore \,{f^{ - 1}}\left( x \right) = \frac{1}{2}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}\, \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section