Question

The integer $$n$$ for which $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\cos \,x - 1} \right)\left( {\cos \,x - {e^x}} \right)}}{{{x^n}}}$$      is a finite non-zero number is-

A. $$1$$
B. $$2$$
C. $$3$$  
D. $$4$$
Answer :   $$3$$
Solution :
Given that,
$$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\cos \,x - 1} \right)\left( {\cos \,x - {e^x}} \right)}}{{{x^n}}} = $$       finite non zero number
$$\eqalign{ & \mathop { = \lim }\limits_{x \to 0} \frac{{\left( {1 - \cos \,x} \right)\left( {1 + \cos \,x} \right)\left( {{e^x} - \cos \,x} \right)}}{{{x^n}\left( {1 + \cos \,x} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{{{\sin }^2}\,x}}{{{x^2}}}} \right).\left( {\frac{{{e^x} - \cos \,x}}{{{x^{n - 2}}}}} \right).\left( {\frac{1}{{1 + \cos \,x}}} \right) \cr & = \mathop {\lim }\limits_{x \to 0} {1^2}.\frac{{{e^x} - \cos \,x}}{{{x^{n - 2}}}}.\frac{1}{2} \cr & = \frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \sin \,x}}{{\left( {x - 2} \right){x^{n - 3}}}}\,\,\,\left[ {{\text{using L'Hospital rule}}} \right] \cr} $$
For this limit to be finite, $$n - 3 = 0 \Rightarrow n = 3$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section