Question

The image of the point $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   by the plane $$lx + my + nz = 0$$    is the point $$Q\left( {\alpha ',\,\beta ',\,\gamma '} \right).$$   Then :

A. $${\alpha ^2} + {\beta ^2} + {\gamma ^2} = {l^2} + {m^2} + {n^2}$$
B. $${\alpha ^2} + {\beta ^2} + {\gamma ^2} = \alpha {'^2} + \beta {'^2} + \gamma {'^2}$$  
C. $$\alpha \alpha ' + \beta \beta ' + \gamma \gamma ' = 0$$
D. $$l\left( {\alpha - \alpha '} \right) + m\left( {\beta - \beta '} \right) + n\left( {\gamma - \gamma '} \right) = 0$$
Answer :   $${\alpha ^2} + {\beta ^2} + {\gamma ^2} = \alpha {'^2} + \beta {'^2} + \gamma {'^2}$$
Solution :
Given image of the point $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   by the plane $$lx + my + nz = 0$$    is the point $$Q\left( {\alpha ',\,\beta ',\,\gamma '} \right)$$
But $$lx + my + nz = 0$$    passes through origin.
Let $$O$$ be the origin.
Therefore, $$O$$ is equidistant from $$P$$ and $$Q$$
$$\eqalign{ & \Rightarrow OP = OQ \cr & \Rightarrow O{P^2} = O{Q^2} \cr & \therefore \,{\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\alpha ^2} + {\beta ^2} + {\gamma ^2} \cr} $$
Here, option B is correct.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section