Solution :

$$\eqalign{
& \frac{{a - 1}}{2} = \frac{{b - 3}}{{ - 1}} = \frac{{c - 4}}{1} = \lambda \,\,\left( {{\text{let}}} \right) \cr
& \Rightarrow a = 2\lambda + 1 \cr
& b = 3 - \lambda \cr
& c = 4 + \lambda \cr
& P = \left( {\frac{{a + 1}}{2},\,\frac{{b + 3}}{2},\,\frac{{c + 4}}{2}} \right) \cr
& = \left( {\lambda + 1,\,\frac{{6 - \lambda }}{2},\,\frac{{\lambda + 8}}{2}} \right) \cr
& \therefore 2\left( {\lambda + 1} \right) - \frac{{6 - \lambda }}{2} + \frac{{\lambda + 8}}{2} + 3 = 0 \cr
& \Rightarrow 3\lambda + 6 = 0\,\,\,\,\,\, \Rightarrow \lambda = - 2 \cr
& a = - 3,\,\,\,b = 5,\,\,\,c = 2 \cr} $$
Required line is $$\frac{{x + 3}}{3} = \frac{{y - 5}}{1} = \frac{{z - 2}}{{ - 5}}$$