Question

The graph of the function $$\cos \,x\,\cos \left( {x + 2} \right) - {\cos ^2}\left( {x + 1} \right)$$       is :

A. a straight line passing through $$\left( {0,\, - {{\sin }^2}1} \right)$$   with slope $$2$$
B. a straight line passing through $$\left( {0,\,0} \right)$$
C. a parabola with vertex $$\left( {0,\, - {{\sin }^2}1} \right)$$
D. a straight line passing through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$   and parallel to the $$x$$-axis  
Answer :   a straight line passing through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$   and parallel to the $$x$$-axis
Solution :
$$\eqalign{ & y = \frac{1}{2}\left[ {\cos \left( {2x + 2} \right) + \cos \,2 - \left\{ {1 + \cos \left( {2x + 2} \right)} \right\}} \right] \cr & {\text{or }}y = - \frac{1}{2}\left( {1 - \cos \,2} \right) = - {\sin ^2}1{\text{ i}}{\text{.e}}{\text{., constant}} \cr} $$
$$\therefore $$  Graph is a line parallel to $$x$$-axis. Also when $$x = \frac{\pi }{2},\,y = - {\cos ^2}\left( {\frac{\pi }{2} + 1} \right) = - {\sin ^2}1$$        and hence it passes through the point $$\left( {\frac{\pi }{2},\, - {{\sin }^2}1} \right)$$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section