Question

The gradient of the curve passing through $$\left( {4,\,0} \right)$$  is given by $$\frac{{dy}}{{dx}} - \frac{y}{x} + \frac{{5x}}{{\left( {x + 2} \right)\left( {x - 3} \right)}} = 0$$       if the point $$\left( {5,\,a} \right)$$  lies on the curve, then the value of $$a$$ is :

A. $$\frac{{67}}{{12}}$$
B. $$5\,\sin \,\frac{7}{{12}}$$
C. $$5\,\log \,\frac{7}{{12}}$$  
D. none of these
Answer :   $$5\,\log \,\frac{7}{{12}}$$
Solution :
The differential equation is
$$\eqalign{ & \frac{{dy}}{{dx}} - \frac{y}{x} = - \frac{{5x}}{{\left( {x + 2} \right)\left( {x - 3} \right)}} \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\left( { - \frac{1}{x}} \right)dx} }} = {e^{ - \ln \,x}} = \frac{1}{x} \cr} $$
Solution is
$$y\left( {\frac{1}{x}} \right) = \int {\left( {\frac{1}{x}} \right) \times \frac{{5x}}{{\left( {x + 2} \right)\left( {x - 3} \right)}}dx} = \ln \left( {\frac{{x + 2}}{{x - 3}}} \right) + C$$
It passes through $$\left( {4,\,0} \right),\,{\text{so }}C = - \ln \,6$$
$$\eqalign{ & \therefore \,y = x\,\ln \left\{ {\frac{{\left( {x + 2} \right)}}{{6\left( {x - 3} \right)}}} \right\}{\text{ }}\,{\text{Putting }}\left( {5,\,a} \right) \cr & {\text{we get }}a = 5\,\ln \,\left( {\frac{7}{{12}}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section