Question

The general solution of the differential equation $$\frac{{dy}}{{dx}} - \frac{{\tan \,y}}{{1 + x}} = \left( {1 + x} \right){e^x}\sec \,y$$       is :

A. $$\sin \left( {1 + x} \right) = y\left( {{e^x} + c} \right)$$
B. $$y\,\sin \left( {1 + x} \right) = c{e^x}$$
C. $$\left( {1 + x} \right)\sin \,y = {e^x} + c$$
D. $$\sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$  
Answer :   $$\sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$
Solution :
Divide the equation by $$\sec \,y$$
$$\eqalign{ & \cos \,y\frac{{dy}}{{dx}} - \frac{{\sin \,y}}{{1 + x}} = \left( {1 + x} \right){e^x} \cr & {\text{Put }}\sin \,y = z \Rightarrow \cos \,y\frac{{dy}}{{dx}} = \frac{{dz}}{{dx}}{\text{ then}} \cr & \frac{{dz}}{{dx}} - \left( {\frac{1}{{1 + x}}} \right)z = \left( {1 + x} \right){e^x} \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{ - \int {\frac{1}{{1 + x}}dx} }} = {e^{ - \log \left( {1 + x} \right)}} = \frac{1}{{1 + x}} \cr} $$
The solution is $$z\left( {\frac{1}{{1 + x}}} \right) = {e^x} + c \Rightarrow \sin \,y = \left( {1 + x} \right)\left( {{e^x} + c} \right)$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section