Question

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1  
Answer :   all integers except 1
Solution :
$$\eqalign{ & {\text{We have }}f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right] \cr & {\text{At }}x = 0, \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{. }} = \mathop {\lim }\limits_{h \to 0} f\left( { - h} \right) = \mathop {\lim }\limits_{h \to 0} {\left[ { - h} \right]^2} - \left[ {{{\left( { - h} \right)}^2}} \right] \cr & = \mathop {\lim }\limits_{h \to 0} f{\left( { - 1} \right)^2} - \left[ {{h^2}} \right] = \mathop {\lim }\limits_{h \to 0} 1 - 0 = 1 \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{. }} = \mathop {\lim }\limits_{h \to 0} f\left( h \right) = \mathop {\lim }\limits_{h \to 0} {\left[ h \right]^2} - \left[ {{h^2}} \right] \cr & = \mathop {\lim }\limits_{h \to 0} \,0 - 0 = 0 \cr & \therefore \,{\text{L}}{\text{.H}}{\text{.L}}{\text{.}} \ne {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} \cr & \therefore f\left( x \right){\text{is not continuous at }}x = 0 \cr & {\text{At }}x = 1 \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{. }} = \mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \mathop {\lim }\limits_{h \to 0} {\left[ {1 - h} \right]^2} - \left[ {{{\left( {1 - h} \right)}^2}} \right] \cr & = \mathop {\lim }\limits_{h \to 0} \,0 - 0 = 0 \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{. }} = \mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \mathop {\lim }\limits_{h \to 0} {\left[ {1 + h} \right]^2} - \left[ {{{\left( {1 + h} \right)}^2}} \right] \cr & = \mathop {\lim }\limits_{h \to 0} \,1 - 1 = 0 \cr & f\left( 1 \right) = {\left[ 1 \right]^2} - \left[ {{1^2}} \right] = 1 - 1 = 0 \cr & \therefore \,{\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = f\left( 1 \right) \cr & \therefore f\left( x \right)\,\,{\text{is continuous at }}x = {\text{ }}1{\text{ }} \cr} $$
Clearly at other integral pts $$f\left( x \right)$$  is not continuous.

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section