Solution :
$$f(x) = \left| {px - q} \right| + r\left| x \right|$$
\[ = \left\{ {\begin{array}{*{20}{c}}
{ - px + q - rx,}\\
{ - px + q + rx,}\\
{px - q + rx,}
\end{array}\,\,\begin{array}{*{20}{c}}
{x \le 0}\\
{0 < x \le \frac{q}{p}}\\
{\frac{q}{p} < x}
\end{array}} \right.\]
$$\eqalign{
& {\text{For}}\,r = p,f'\left( x \right) < 0\,{\text{if}}\,x < 0 \cr
& = 0\,{\text{if}}\,0 < x < \frac{q}{p} \cr
& > 0\,{\text{if}}\,x > \frac{q}{p} \cr} $$
.PNG)
From graph (i) infinite many points for min value of $$f\left( x \right)$$
$$\eqalign{
& {\text{for}}\,r < p,f'\left( x \right) < 0\,{\text{if}}\,x \leqslant 0 \cr
& < 0\,{\text{if}}\,{\text{0 < }}\,x \leqslant \frac{q}{p} \cr
& > 0\,{\text{if}}\,x < \frac{q}{p} \cr} $$
.PNG)
From graph (ii) only pt. of min of $$f\left( x \right)$$ at $$x = \frac{q}{p}$$
$$\eqalign{
& {\text{For}}\,r > p,f'\left( x \right) < 0\,{\text{if}}\,x \leqslant 0 \cr
& > 0\,{\text{if}}\,0 < x \cr} $$
.PNG)
From graph (iii) only one pt. of min of $$f\left( x \right)$$ at $$x = 0$$