Question

The function $$f\left( x \right) = \left| {px - q} \right| + r\left| x \right|,x \in \left( { - \infty ,\infty } \right)$$       where $$p > 0,\,q > 0,\,r > 0$$     assumes its minimum value only on one point if

A. $$p \ne q$$
B. $$r \ne q$$
C. $$r \ne p$$  
D. $$p = q = r$$
Answer :   $$r \ne p$$
Solution :
$$f(x) = \left| {px - q} \right| + r\left| x \right|$$
\[ = \left\{ {\begin{array}{*{20}{c}} { - px + q - rx,}\\ { - px + q + rx,}\\ {px - q + rx,} \end{array}\,\,\begin{array}{*{20}{c}} {x \le 0}\\ {0 < x \le \frac{q}{p}}\\ {\frac{q}{p} < x} \end{array}} \right.\]
$$\eqalign{ & {\text{For}}\,r = p,f'\left( x \right) < 0\,{\text{if}}\,x < 0 \cr & = 0\,{\text{if}}\,0 < x < \frac{q}{p} \cr & > 0\,{\text{if}}\,x > \frac{q}{p} \cr} $$
Function mcq solution image
From graph (i) infinite many points for min value of $$f\left( x \right)$$
$$\eqalign{ & {\text{for}}\,r < p,f'\left( x \right) < 0\,{\text{if}}\,x \leqslant 0 \cr & < 0\,{\text{if}}\,{\text{0 < }}\,x \leqslant \frac{q}{p} \cr & > 0\,{\text{if}}\,x < \frac{q}{p} \cr} $$
Function mcq solution image
From graph (ii) only pt. of min of $$f\left( x \right)$$ at $$x = \frac{q}{p}$$
$$\eqalign{ & {\text{For}}\,r > p,f'\left( x \right) < 0\,{\text{if}}\,x \leqslant 0 \cr & > 0\,{\text{if}}\,0 < x \cr} $$
Function mcq solution image
From graph (iii) only one pt. of min of $$f\left( x \right)$$  at $$x = 0$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section