Question

The function $$f\left( x \right) = \int\limits_{ - 1}^x {t\left( {{e^t} - 1} \right)\left( {t - 1} \right){{\left( {t - 2} \right)}^3}{{\left( {t - 3} \right)}^5}dt} $$         has a local minimum at $$x = ?$$

A. 0
B. 1, 3  
C. 2
D. None of these
Answer :   1, 3
Solution :
$$\eqalign{ & \frac{{dy}}{{dx}} = f'\left( x \right) \cr & \Rightarrow x\left( {{e^x} - 1} \right)\left( {x - 1} \right){\left( {x - 2} \right)^3}{\left( {x - 3} \right)^5} = 0 \cr} $$
Critical points are $$0,\,1,\,2,\,3$$
Consider change of sign of $$\frac{{dy}}{{dx}}$$  at $$x = 3.$$
$$x < 3,\,\frac{{dy}}{{dx}} = $$   negative and $$x > 3,\,\frac{{dy}}{{dx}} = $$   positive
Change is from negative to positive, hence minimum at $$x = 3.$$  Again minimum and maximum occur alternately.
$$\therefore $$  2nd minimum is at $$x = 1.$$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section