Question

The foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   and the hyperbola $$\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$$    coincide. Then the value of $${{b^2}}$$  is-

A. $$9$$
B. $$1$$
C. $$5$$
D. $$7$$  
Answer :   $$7$$
Solution :
$$\eqalign{ & \frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}} \cr & a = \sqrt {\frac{{144}}{{25}}} ,\,b = \sqrt {\frac{{81}}{{25}}} ,\,e = \sqrt {1 + \frac{{81}}{{144}}} = \frac{{15}}{{12}} = \frac{5}{4} \cr} $$
$$\therefore $$ Foci $$ = \left( { \pm 3,\,0} \right)$$
$$\therefore $$ foci of ellipse $$=$$ foci of hyperbola
$$\therefore $$ for ellipse $$ae = 3$$   but $$a=4,$$
$$\therefore e = \frac{3}{4}$$
Then $${b^2} = {a^2}{\left( {1 - e} \right)^2}\,\,\,\,\,\,\, \Rightarrow {b^2} = 16\left( {1 - \frac{9}{{16}}} \right) = 7$$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section