Question

The expression $${\left( {\frac{{\cos A + \cos B}}{{\sin A - \sin B}}} \right)^n} + {\left( {\frac{{\sin A + \sin B}}{{\cos A - \cos B}}} \right)^n} = $$

A. $$2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right)$$    if $$n$$ is even  
B. $$0$$ if $$n$$ is even
C. $$2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right)$$    if $$n$$ is odd
D. $$3$$ if $$n$$ is odd
Answer :   $$2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right)$$    if $$n$$ is even
Solution :
The given expression
$$\eqalign{ & = {\left( {\frac{{2\cos \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)}}{{2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)}}} \right)^n} + {\left( {\frac{{2\sin \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)}}{{2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{B - A}}{2}} \right)}}} \right)^n} \cr & = {\cot ^n}\left( {\frac{{A - B}}{2}} \right) + {\left( { - 1} \right)^n}{\cot ^n}\left( {\frac{{A - B}}{2}} \right) \cr} $$
\[ = \left\{ \begin{array}{l} 2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right),{\rm{ if }}\,n\,{\rm{ is\, even}}\\ 0,{\rm{ if }}\,n\,{\rm{ is\, odd}} \end{array} \right.\]

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section