Question

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$  
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Answer :   $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
Solution :
$$\eqalign{ & \frac{{12}}{{\left( {3 + \sqrt 5 } \right) + 2\sqrt 2 }} \cr & = \frac{{12}}{{\left( {3 + \sqrt 5 } \right) + 2\sqrt 2 }} \times \frac{{\left( {3 + \sqrt 5 } \right) - 2\sqrt 2 }}{{\left( {3 + \sqrt 5 } \right) - 2\sqrt 2 }} \cr & = \frac{{12\left[ {3 + \sqrt 5 - 2\sqrt 2 } \right]}}{{{{\left( {3 + \sqrt 5 } \right)}^2} - {{\left( {2\sqrt 2 } \right)}^2}}} \cr & = \frac{{12\left[ {3 + \sqrt 5 - 2\sqrt 2 } \right]}}{{9 + 5 + 6\sqrt 5 - 8}} \cr & = \frac{{12\left[ {3 + \sqrt 5 - 2\sqrt 2 } \right]}}{{6\left( {\sqrt 5 + 1} \right)}} \times \frac{{\sqrt 5 - 1}}{{\sqrt 5 - 1}} \cr & = \frac{{2\left[ {3\sqrt 5 + 5 - 2\sqrt {10} - 3 - \sqrt 5 + 2\sqrt 2 } \right]}}{{5 - 1}} \cr & = \frac{{2 + 2\sqrt 5 + 2\sqrt 2 - 2\sqrt {10} }}{2} \cr & = 1 + \sqrt 2 + \sqrt 5 - \sqrt {10} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section