Question

The equation of the plane which makes with co-ordinate axes, a triangle with its centroid $$\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   is :

A. $$\alpha x + \beta y + \gamma z = 3$$
B. $$\alpha x + \beta y + \gamma z = 1$$
C. $$\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 3$$  
D. $$\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 1$$
Answer :   $$\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 3$$
Solution :
Let us take a triangle $$ABC$$  and their vertices $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$     and $$C\left( {0,\,0,\,c} \right)$$
Therefore the equation of plane is
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1......\left( {\text{i}} \right)$$
Now, given centroid of $$\Delta ABC$$   is $$\left( {\alpha ,\,\beta ,\,\gamma } \right)$$
As we know, centroid of $$\Delta ABC$$   with vertices $$\left( {{x_1},\,{y_1},\,{z_1}} \right),\,\left( {{x_2},\,{y_2},\,{z_2}} \right)$$       and $$\left( {{x_3},\,{y_3},\,{z_3}} \right)$$   is given by
$$\left( {\frac{{{x_1} + {x_2} + {x_3}}}{3},\,\frac{{{y_1} + {y_2} + {y_3}}}{3},\,\frac{{{z_1} + {z_2} + {z_3}}}{3}} \right)$$
$$\therefore $$  By using this formula, we have
$$\eqalign{ & \frac{{a + 0 + 0}}{3} = \alpha \, \Rightarrow a = 3\alpha \,; \cr & \frac{{0 + b + 0}}{3} = \beta \, \Rightarrow b = 3\beta \,; \cr & {\text{and }}\frac{{0 + 0 + c}}{3} = \gamma \, \Rightarrow c = 3\gamma \cr} $$
Now, put the values of $$a,\,b,\,c$$  in equation $$\left( {\text{i}} \right)$$, which gives
$$\eqalign{ & \frac{x}{{3\alpha }} + \frac{y}{{3\beta }} + \frac{z}{{3\gamma }} = 1 \cr & \therefore \,\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 3 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section