Question
The equation of the plane through $$\left( {1,\,1,\,1} \right)$$ and passing through the line of intersection of the planes $$x + 2y - z + 1 = 0$$ and $$3x - y - 4z + 3 = 0$$ is :
A.
$$8x + 5y - 11z + 8 = 0$$
B.
$$8x + 5y + 11z + 8 = 0$$
C.
$$8x - 5y - 11z + 8 = 0$$
D.
None of these
Answer :
$$8x - 5y - 11z + 8 = 0$$
Solution :
$$\eqalign{
& {\text{Any plane through the line is}} \cr
& \left( {x + 2y - z + 1} \right) + \lambda \left( {3x - y - 4z + 3} \right) = 0 \cr
& {\text{It passes through }}\left( {1,\,1,\,1} \right). \cr
& \therefore \,\left( {1 + 2 - 1 + 1} \right) + \lambda \left( {3 - 1 - 4 + 3} \right) = 0 \cr
& \Rightarrow \lambda = - 3 \cr
& {\text{Therefore, the required plane is}} \cr
& 8x - 5y - 11z + 8 = 0 \cr} $$