Question

The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes $$2x+y-2z=5$$    and $$3x-6y-2z=7,$$    is :

A. $$14x+2y-15z=1$$
B. $$14x-2y+15z=27$$
C. $$14x+2y+15z=31$$  
D. $$-14x+2y+15z=3$$
Answer :   $$14x+2y+15z=31$$
Solution :
The required equation of plane is given by
\[\begin{array}{l} \left| \begin{array}{l} x - 1\,\,\,\,\,y - 1\,\,\,\,\,z - 1\\ \,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\, - 2\\ \,\,\,\,\,3\,\,\,\,\,\,\,\,\,\,\, - 6\,\,\,\,\,\,\,\, - 2 \end{array} \right| = 0\\ \Rightarrow \left( {x - 1} \right)\left( { - 14} \right) - \left( {y - 1} \right)\left( 2 \right) + \left( {z - 1} \right)\left( { - 15} \right) = 0\\ \Rightarrow 14x - 14 + 2y - 2 + 15z - 15 = 0\\ \Rightarrow 14x + 2y + 15z = 31 \end{array}\]

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section