Question

The equation of the line which passes through the point $$\left( {1,\,1,\,1} \right)$$   and intersect the lines $$\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}$$     and $$\frac{{x + 2}}{1} = \frac{{y - 3}}{2} = \frac{{z + 1}}{4}$$     is :

A. $$\frac{{x - 1}}{3} = \frac{{y - 1}}{{10}} = \frac{{z - 1}}{{17}}$$  
B. $$\frac{{x - 1}}{2} = \frac{{y - 1}}{3} = \frac{{z - 1}}{{ - 5}}$$
C. $$\frac{{x - 1}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z - 1}}{{ - 4}}$$
D. $$\frac{{x - 1}}{8} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{3}$$
Answer :   $$\frac{{x - 1}}{3} = \frac{{y - 1}}{{10}} = \frac{{z - 1}}{{17}}$$
Solution :
Any line passing through the point $$\left( {1,\,1,\,1} \right)$$   is
$$\frac{{x - 1}}{a} = \frac{{y - 1}}{b} = \frac{{z - 1}}{c}......\left( {\text{i}} \right)$$
This line intersects the line
$$\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}$$
$${\text{If }}a:b:c \ne 2:3:4$$
\[{\rm{and }}\left| \begin{array}{l} 1 - 1\,\,\,\,\,2 - 1\,\,\,\,\, 3 - 1\\ \,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\\ \,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 \end{array} \right| = 0\]
$$ \Rightarrow a - 2b + c = 0.....\left( {{\text{ii}}} \right)$$
Again, line $$\left( {\text{i}} \right)$$ intersects line
$$\frac{{x - \left( { - 2} \right)}}{1} = \frac{{y - 3}}{2} = \frac{{z - \left( { - 1} \right)}}{4}$$
$${\text{If }}a:b:c \ne 2:3:4$$
\[{\rm{and }}\left| \begin{array}{l} - 2 - 1\,\,\,\,\,3 - 1\,\,\,\,\, - 1 - 1\\ \,\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\\ \,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4 \end{array} \right| = 0\]
$$ \Rightarrow 6a + 5b - 4c = 0.....\left( {{\text{iii}}} \right)$$
From $$\left( {{\text{ii}}} \right)$$ and $$\left( {{\text{iii}}} \right)$$ by cross multiplication, we have
$$\frac{a}{{8 - 5}} = \frac{b}{{6 + 4}} = \frac{c}{{5 + 12}}{\text{ or }}\frac{a}{3} = \frac{b}{{10}} = \frac{c}{{17}}$$
So, the required line is
$$\frac{{x - 1}}{3} = \frac{{y - 1}}{{10}} = \frac{{z - 1}}{{17}}.$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section