Solution :
If the inradius $$=r$$ then the centre $$ = \left( {r,\,r} \right)$$ and its distance from the line $$4x + 3y = 6$$ is $$r.$$
$$\eqalign{
& {\text{So, }}\left| {\frac{{4r + 3r - 6}}{{\sqrt {{4^2} + {3^2}} }}} \right| = r{\text{ or }}\left| {7r - 6} \right| = 5r \cr
& \therefore 7r - 6 = \pm 5r\,\,\,\,\, \Rightarrow r = 3,\,\frac{1}{2} \cr} $$

Clearly from the figure, $$r \ne 3$$
$$\therefore $$ the equation of the incircle is $${\left( {x - \frac{1}{2}} \right)^2} + {\left( {y - \frac{1}{2}} \right)^2} = {\left( {\frac{1}{2}} \right)^2}$$