Question

The equation of the ellipse with its centre at $$\left( {1,\,2} \right),$$  focus at $$\left( {6,\,2} \right)$$  and passing through the point $$\left( {4,\,6} \right)$$  is $$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{b^2}}} = 1,$$     then :

A. $${a^2} = 1,\,{b^2} = 25$$
B. $${a^2} = 25,\,{b^2} = 20$$
C. $${a^2} = 20,\,{b^2} = 25$$
D. None of these  
Answer :   None of these
Solution :
Centre is $$\left( {1,\,2} \right)$$  and focus is $$\left( {6,\,2} \right),$$  hence the line joining the centre $$C$$ and the focus $$S$$ (i.e., the axis) is parallel to $$x$$-axis. Therefore, the equation must be of the form
Ellipse mcq solution image
$$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{b^2}}} = 1......\left( {\text{i}} \right)$$
The distance between the centre and the focus
$$CS = ae = 6 - 1 = 5$$
Also
$${b^2} = {a^2}\left( {1 - {e^2}} \right) = {a^2} - {a^2}{e^2} = {a^2} - 25$$
$$\therefore $$  The equation $$\left( {\text{i}} \right)$$ becomes
$$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{a^2} - 25}} = 1......\left( {{\text{ii}}} \right)$$
The point $$\left( {4,\,6} \right)$$  lies on it, therefore
$$\eqalign{ & \frac{{{{\left( {4 - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {6 - 2} \right)}^2}}}{{{a^2} - 25}} = 1\, \Rightarrow {a^2} = 45 \cr & \therefore \,{b^2} = 45 - 25 = 20 \cr} $$
The required equation is $$\frac{{{{\left( {x - 1} \right)}^2}}}{{45}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{20}} = 1$$
Ellipse mcq solution image
$$\eqalign{ & 9ac - 9{a^2} - 2{c^2} > 9ac - 6{c^2}......\left( {\text{i}} \right) \cr & {\text{Again }}3a < 2c \cr & \Rightarrow 9ac < 6{c^2} \cr & \Rightarrow 9ac - 6{c^2}......\left( {{\text{ii}}} \right) \cr & {\text{From }}\left( {\text{i}} \right){\text{and}}\left( {{\text{ii}}} \right),\,\,9ac - 9{a^2} - 2{c^2} > 0 \cr} $$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section