Question

The equation of the curve satisfying $$x\,dy - y\,dx = \sqrt {{x^2} - {y^2}} $$     and $$y\left( 1 \right) = 0$$   is :

A. $$y = {x^2}\log \left( {\sin \,x} \right)$$
B. $$y = x\,\sin \left( {\log \,x} \right)$$  
C. $${y^2} = x{\left( {x - 1} \right)^2}$$
D. $$y = 2{x^2}\left( {x - 1} \right)$$
Answer :   $$y = x\,\sin \left( {\log \,x} \right)$$
Solution :
The given equation can be rewritten as
$$\eqalign{ & {x^2}\left[ {\frac{{x\,dy - y\,dx}}{{{x^2}}}} \right] = x\sqrt {1 - \frac{{{y^2}}}{{{x^2}}}} \cr & \Rightarrow {x^2}\frac{d}{{dx}}\left( {\frac{y}{x}} \right) = x\sqrt {1 - \frac{{{y^2}}}{{{x^2}}}} \cr & {\text{Put }}\frac{y}{x} = z,{\text{ we get}} \cr & \Rightarrow {x^2}\frac{{dz}}{{dx}} = x\sqrt {1 - {z^2}} \cr & \Rightarrow \frac{{dz}}{{\sqrt {1 - {z^2}} }} = \frac{{dx}}{x} \cr & {\text{Integrating, we get}} \cr & {\sin ^{ - 1}}\left( z \right) = \log \,x + c \cr & \Rightarrow {\sin ^{ - 1}}\left( {\frac{y}{x}} \right) = \log \,x + c \cr & {\text{Apply the boundary value}}\,y\left( 1 \right) = 0 \cr & \Rightarrow {\sin ^{ - 1}}\left( {\frac{0}{1}} \right) = \log \,1 + c \Rightarrow c = 0 \cr & \therefore \,{\sin ^{ - 1}}\left( {\frac{y}{x}} \right) = \log \,x + 0 \Rightarrow y = x\,\sin \left( {\log \,x} \right) \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section