Question

The equation of the curve passing through the point $$\left( {0,\,\frac{\pi }{4}} \right)$$  whose differential equation is $$\sin \,x\,\cos \,y\,dx + \cos \,x\,\sin \,y\,dy = 0,$$       is :

A. $$\sec \,x\,\sec \,y = \sqrt 2 $$  
B. $$\cos \,x\,\cos \,y = \sqrt 2 $$
C. $$\sec \,x = \sqrt 2 \,\cos \,y$$
D. $$\cos \,y = \sqrt 2 \,\sec \,y$$
Answer :   $$\sec \,x\,\sec \,y = \sqrt 2 $$
Solution :
The given differential equation is $$\sin \,x\,\cos \,y\,dx + \cos \,x\,\sin \,y\,dy = 0$$
dividing by $$\cos \,x\,\cos \,y$$
$$ \Rightarrow \frac{{\sin \,x}}{{\cos \,x}}dx + \frac{{\sin \,y}}{{\cos \,y}}dy = 0$$
Integrating,
$$\eqalign{ & \int {\tan \,x\,dx} + \int {\tan \,y\,dy} = \log \,c \cr & {\text{or }}\log \,\sec \,x\,\sec \,y = \log \,c \cr & {\text{or }}\sec \,x\,\sec \,y = c \cr} $$
curve passes through the point $$\left( {0,\,\frac{\pi }{4}} \right)$$
$$\sec \,0\,\sec \frac{\pi }{4} = c = \sqrt 2 $$
Hence, the required equation of the curve is $$\sec \,x\,\sec \,y = \sqrt 2 .$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section