Question

The equation $$\int_{ - \frac{\pi }{2}}^{\frac{\pi }{4}} {\left( {\lambda \left| {\sin \,x} \right| + \frac{{\mu \sin \,x}}{{1 + \cos \,x}} + \nu } \right)dx = 0,} $$         where $$\lambda ,\,\mu ,\,\nu $$  are constants, gives a relation between :

A. $$\lambda ,\,\mu \,{\text{and }}\nu $$
B. $$\lambda \,{\text{and }}\nu $$  
C. $$\lambda \,\,{\text{and }}\mu $$
D. $$\mu \,\,{\text{and }}\nu $$
Answer :   $$\lambda \,{\text{and }}\nu $$
Solution :
$$\frac{{\mu \sin \,x}}{{1 + \cos \,x}}$$   is an odd function. So, $$\int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\frac{{\mu \sin \,x}}{{1 + \cos \,x}}dx = 0.} $$
$$\therefore $$ the equation is $$\lambda \int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\left| {\sin \,x} \right|dx + \nu \int_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {dx = 0} } $$
Or $$2\lambda \int_0^{\frac{\pi }{4}} {\left| {\sin \,x} \right|dx + \nu .\frac{\pi }{2} = 0,} $$       which is a relation between $$\lambda ,\,\nu .$$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section