Question

The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors $$\hat a,\,\hat b,\,\hat c$$   such that $$\hat a.\hat b = \,\hat b.\hat c = \hat c.\hat a = \frac{1}{2}.$$     Then, the volume of the parallelepiped is :

A. $$\frac{1}{{\sqrt 2 }}$$  
B. $$\frac{1}{{2\sqrt 2 }}$$
C. $$\frac{{\sqrt 3 }}{2}$$
D. $$\frac{1}{{\sqrt 3 }}$$
Answer :   $$\frac{1}{{\sqrt 2 }}$$
Solution :
We know that the volume of a parallelepiped with coterminous edges as the vectors $$\hat a,\,\hat b,\,\hat c$$   is given by
\[\begin{array}{l} V = {\left[ {\vec a\,\vec b\,\vec c} \right]^2} = \left[ \begin{array}{l} \vec a.\vec a\,\,\,\,\,\vec a.\vec b\,\,\,\,\,\vec a.\vec c\\ \vec b.\vec a\,\,\,\,\,\vec b.\vec b\,\,\,\,\,\vec b.\vec c\\ \vec c.\vec a\,\,\,\,\,\vec c.\vec b\,\,\,\,\,\vec c.\vec c \end{array} \right]\\ {V^2} = \left| \begin{array}{l} 1\,\,\,\,\,\frac{1}{2}\,\,\,\,\,\frac{1}{2}\\ \frac{1}{2}\,\,\,\,\,1\,\,\,\,\,\frac{1}{2}\\ \frac{1}{2}\,\,\,\,\,\frac{1}{2}\,\,\,\,\,1 \end{array} \right| = \frac{1}{2}\\ \Rightarrow V = \frac{1}{{\sqrt 2 }} \end{array}\]

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section