Question
The eccentricity of the hyperbola whose latus rectum is $$8$$ and conjugate axis is equal to half the distance between the foci is :
A.
$$\frac{4}{3}$$
B.
$$\frac{4}{{\sqrt 3 }}$$
C.
$$\frac{2}{{\sqrt 3 }}$$
D.
none of these
Answer :
$$\frac{2}{{\sqrt 3 }}$$
Solution :
The standard equation of hyperbola is $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$
Latus rectum $$ = \frac{{2{b^2}}}{a},$$
Conjugate axis $$ = 2b,$$
Distance between the foci $$= 2 ae$$
According to the question,
$$\eqalign{
& \frac{{2{b^2}}}{a} = 8......\left( {\text{i}} \right) \cr
& 2b = \frac{1}{2}\left( {2ae} \right) \Rightarrow b = \frac{{ae}}{2}......\left( {{\text{ii}}} \right) \cr} $$
From equation $$\left( {\text{i}} \right)\& \left( {{\text{ii}}} \right),$$
$$\eqalign{
& \frac{2}{a}{\left( {\frac{{ae}}{2}} \right)^2} = 8 \cr
& \Rightarrow 2.\frac{{{a^2}{e^2}}}{{4a}} = 8 \cr
& \Rightarrow a{e^2} = 16......\left( {{\text{iii}}} \right) \cr} $$
From equation $$\left( {\text{i}} \right),\,\,{b^2} = 4a$$
Using $${b^2} = {a^2}\left( {{e^2} - 1} \right)$$ we get
$$\eqalign{
& \left( {4a} \right) = {a^2}\left( {{e^2} - 1} \right) \cr
& \Rightarrow 4 = \frac{{16}}{{{e^2}}}\left( {{e^2} - 1} \right) \cr
& \Rightarrow 16 - \frac{{16}}{{{e^2}}} = 4 \cr
& \Rightarrow \frac{{16}}{{{e^2}}} = 12 \cr
& \therefore \,e = \frac{2}{{\sqrt 3 }}. \cr} $$