Question

The d.r. of normal to the plane through $$\left( {1,\,0,\,0} \right),\,\left( {0,\,1,\,0} \right)$$     which makes an angle $$\frac{\pi }{4}$$ with plane $$x + y = 3$$   are :

A. $$1,\,\sqrt 2 ,\,1$$
B. $$1,\,1,\,\sqrt 2$$  
C. $$1,\,1,\,2$$
D. $$\sqrt 2 ,\,1,\,1$$
Answer :   $$1,\,1,\,\sqrt 2$$
Solution :
$$\eqalign{ & {\text{Equation of plane through}}\left( {1,\,0,\,0} \right){\text{ is}} \cr & a\left( {x - 1} \right) + by + cz = 0......\left( {\text{i}} \right) \cr & \left( {\text{i}} \right){\text{passes through}}\left( {0,\,1,\,0} \right) \cr & - a + b = 0 \cr & \Rightarrow b = a\,;\,{\text{Also,}} \cr & {\text{cos}}\,{45^ \circ } = \frac{{a + a}}{{\sqrt {2\left( {2{a^2} + {c^2}} \right)} }} \cr & \Rightarrow 2a = \sqrt {2{a^2} + {c^2}} \cr & \Rightarrow 2{a^2} = {c^2} \cr & \Rightarrow c = \sqrt 2 a \cr & {\text{So d}}{\text{.r of normal are }}a,\,a,\,\sqrt 2 a\,{\text{i}}{\text{.e}}{\text{., }}1,\,1,\,\sqrt 2 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section