Question

The domain of the function $$f\left( x \right) = {}^{24 - x}{C_{3x - 1}} + {}^{40 - 6x}{C_{8x - 10}}$$       is :

A. $$\left\{ {2,\,3} \right\}$$  
B. $$\left\{ {1,\,2,\,3} \right\}$$
C. $$\left\{ {1,\,2,\,3,\,4} \right\}$$
D. None of these
Answer :   $$\left\{ {2,\,3} \right\}$$
Solution :
$$\eqalign{ & {}^{24 - x}{C_{3x - 1}}{\text{ is defined if,}} \cr & 24 - x > 0,\,3x - 1 \geqslant 0{\text{ and }}24 - x \geqslant 3x - 1 \cr & \Rightarrow x < 24,\,x \geqslant \frac{1}{3}{\text{ and }}x \leqslant \frac{{25}}{4} \cr & \Rightarrow \frac{1}{3} \leqslant x \leqslant \frac{{25}}{4} \cr & {}^{40 - 6x}{C_{8x - 10}}{\text{ is defined if,}} \cr & 40 - 6x > 0,\,8x - 10 \geqslant 0{\text{ and }}40 - 6x \geqslant 8x - 10 \cr & \Rightarrow x < \frac{{20}}{3},\,x \geqslant \frac{5}{4}{\text{ and }}x \leqslant \frac{{25}}{7} \cr & \Rightarrow \frac{5}{4} \leqslant x \leqslant \frac{{25}}{7} \cr & {\text{From (1) and (2), we get }}\frac{5}{4} \leqslant x \leqslant \frac{{25}}{7} \cr & {\text{But }}24 - x\, \in \,N, \cr & \therefore \,\,x{\text{ must be an integer, }}x = 2,\,3 \cr & {\text{Hence domain }}\left( f \right) = \left\{ {2,\,3} \right\} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section