Question

The domain of $$f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }} - \sqrt {1 - {x^2}} $$      is :

A. $$\left] {\frac{1}{2},\,1} \right[$$  
B. $$\left[ { - 1,\,\infty } \right[$$
C. $$\left[ {1,\,\infty } \right[$$
D. none of these
Answer :   $$\left] {\frac{1}{2},\,1} \right[$$
Solution :
$$\eqalign{ & {\text{Given,}}\,\,f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }} - \sqrt {1 - {x^2}} = p\left( x \right) - q\left( x \right) \cr & {\text{where }}p\left( x \right) = \frac{1}{{\sqrt {2x - 1} }}{\text{ and }}q\left( x \right){\text{ = }}\sqrt {1 - {x^2}} \cr & {\text{Now, domain of }}p\left( x \right)\,{\text{exist when}}\,2x - 1 \ne 0 \cr & \Rightarrow x = \frac{1}{2}{\text{ and }}2x - 1 > 0 \cr & \Rightarrow x = \frac{1}{2}{\text{ and }}x > \frac{1}{2} \cr & \therefore \,x\, \in \left( {\frac{1}{2},\,\infty } \right) \cr & {\text{and domain of }}q\left( x \right)\,{\text{exists when }}1 - {x^2} \geqslant 0 \cr & \Rightarrow {x^2} \leqslant 1 \cr & \Rightarrow \left| x \right| \leqslant {\text{1}} \cr & \therefore \, - 1 \leqslant x \leqslant 1 \cr & \therefore \,{\text{Common domain is }}\left] {\frac{1}{2},\,1} \right[ \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section