Question

The Domain for which the function $$f\left( x \right) = 2{x^2} - 1$$    and $$g\left( x \right) = 1 - 3x$$    is equal, i.e., $$f\left( x \right) = g\left( x \right),$$   is :

A. $$\left\{ {0,\,2} \right\}$$
B. $$\left\{ {\frac{1}{2},\, - 2} \right\}$$  
C. $$\left\{ { - \frac{1}{2},\,2} \right\}$$
D. $$\left\{ {\frac{1}{2},\,2} \right\}$$
Answer :   $$\left\{ {\frac{1}{2},\, - 2} \right\}$$
Solution :
$$\eqalign{ & {\text{For }}f\left( x \right) = g\left( x \right) \cr & \Rightarrow 2{x^2} - 1 = 1 - 3x \cr & \Rightarrow 2{x^2} + 3x - 2 = 0 \cr & \Rightarrow 2{x^2} + 4x - x - 2 = 0 \cr & \Rightarrow 2x\left( {x + 2} \right) - 1\left( {x + 2} \right) = 0 \cr & \Rightarrow \left( {x + 2} \right)\left( {2x - 1} \right) = 0 \cr & \Rightarrow x = - 2,\,\frac{1}{2} \cr} $$
$$\therefore $$  The domain for which the function $$f\left( x \right) = g\left( x \right){\text{ is }}\left\{ { - 2,\,\frac{1}{2}} \right\}$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section