Question

The domain and range of the relation $$R$$ given by $$R = \left\{ {\left( {x,\,y} \right):y = x + \frac{6}{x};{\text{ where }}x,\,y\, \in \,N{\text{ and }}x < 6} \right\}$$           is :

A. $$\left\{ {1,\,2,\,3} \right\},\,\left\{ {7,\,5} \right\}$$  
B. $$\left\{ {1,\,2} \right\},\,\left\{ {7,\,5} \right\}$$
C. $$\left\{ {2,\,3} \right\},\,\left\{ {5} \right\}$$
D. None of these
Answer :   $$\left\{ {1,\,2,\,3} \right\},\,\left\{ {7,\,5} \right\}$$
Solution :
$$\eqalign{ & {\text{When }}x = 1,\,y = 7\, \in \,N,\,{\text{so }}\left( {1,\,7} \right) \in \,R \cr & {\text{When }}x = 2,\,y = 2 + 3 = 5\, \in \,N,\,{\text{so }}\left( {2,\,5} \right) \in \,R \cr & {\text{Again for }}x = 3,\,y = 3 + 2 = 5\, \in \,N,\,{\text{so }}\left( {3,\,5} \right) \in \,R \cr & {\text{Similarly for }}x = 4,\,y = 4 + \frac{6}{4}\, \notin \,N \cr & {\text{and for }}x = 5,\,y = 5 + \frac{6}{5}\, \notin \,N \cr & {\text{Thus, }}R = \left\{ {\left( {1,\,7} \right),\,\left( {2,\,5} \right),\,\left( {3,\,5} \right)} \right\} \cr & \therefore {\text{ Domain of }}R = \left\{ {1,\,2,\,3} \right\}{\text{ and Range of }}R = \left\{ {7,\,5} \right\} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section